Корзина
30 отзывов
Насосное и компрессорное оборудование
Контакты
ООО "Лаборатория тепла"
Наличие документов
Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или индивидуального предпринимателя.
+37529354-62-62СергейVELCOM
+37533354-62-62СергейMTS
+37529354-63-63ВикторVELCOM
+37533354-63-63ВикторMTS
+37517396-21-92ФАКС
Сергей, Виктор
БеларусьМинскул. Слободская, д. 2, пом. 15220051
Карта

Насосное и компрессорное оборудование

Классификация насосов по принципу действия

По характеру сил преобладающих в насосе: объёмные, в которых преобладают силы давления и динамические, в которых преобладают силы инерции.

По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы используются для перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая → кинетическая + потенциальная; 2 этап: кинетическая → потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Объёмные насосы

Процесс объёмных насосов основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. Некоторые виды объёмных насосов:

  • Импеллерные насосы — обеспечивают ламинарный поток перекачиваемого продукта на выходе из насоса и могут использоваться в качестве дозаторов. Могут быть изготовлены в пищевом, маслобензостойком и кислотощёлочестойком исполнении
  • Пластинчатые насосы — обеспечивают равномерное и спокойное всасывание перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования. Могут быть как регулируемыми, так и нерегулируемыми. В пластинчатых регулируемых насосах изменение подачи осуществляется за счёт изменения объёма рабочей камеры благодаря изменению эксцентриситета ротора и статора. В качестве регулирующего устройства применяются гидравлические и механические регуляторы.
  • Винтовые насосы — обеспечивают ровный поток перекачиваемого продукта на выходе из насоса, могут использоваться для дозирования
  • Поршневые насосы могут создавать весьма высокое давление, плохо работают с абразивными жидкостями, могут использоваться для дозирования
  • Перистальтические насосы создают невысокое давление, химически инертны, могут использоваться для дозирования
  • Мембранные насосы — создают невысокое давление, могут использоваться для дозирования

Общие свойства объёмных насосов:

  • Цикличность рабочего процесса и связанные с ней порционность и пульсации подачи и давления. Подача объёмного насоса осуществляется не равномерным потоком, а порциями.
  • Герметичность, то есть постоянное отделение напорной гидролинии от всасывающей (лопастные насосы герметичностью не обладают, а являются проточными).
  • Самовсасывание, то есть способность объёмных насосов создавать во всасывающей гидролинии вакуум, достаточный для подъёма жидкости вверх во всасывающей гидролинии до уровня расположения насоса(лопастные насосы не являются самовсасывающими).
  • Независимость давления, создаваемого в напорной гидролинии, от подачи жидкости насосом

Динамические насосы

Динамические насосы подразделяются на:

  • Лопастные насосы, рабочим органом у которых служит лопастное колесо или мелкозаходный шнек. В них входят:
    • Центробежные, у которых преобразование механической энергии привода в потенциальную энергию потока происходит вследствие центробежных сил, возникающих при взаимодействии лопаток рабочего колеса с жидкостью. Центробежные насосы подразделяют на:
      • Центробежно-шнековый насос — вид центробежного насоса с подводом жидкости к рабочему органу выполненному в виде мелкозаходного шнека большого диаметра (дисков), расположенному по центру, с выбросом по касательной вверх или бок от корпуса. Такие насосы способны перекачивать карамелизующиеся и склеивающиеся массы, типа клея
      • Консольный насос — вид центробежного насоса с односторонним подводом жидкости к рабочему колесу, расположенному на конце вала, удалённом от привода.
      • Осевые (пропеллерные) насосы, рабочим органом которых служит лопастное колесо пропеллерного типа. Жидкость в этих насосах перемещаются вдоль оси вращения колеса. Быстроходные насосы с высоким коэффициентом быстроходности, характеризуются большими значениями подач, но низких значениях напора.
      • Полуосевые (диагональные, турбинные) насосы, рабочим органом которых служит полуосевое (диагональное, турбинное) лопастное колесо.
      • Радиальные насосы, рабочими органами которых служат радиальные рабочие колеса. Тихоходные одноступенчатые и многоступенчатые насосы с высокими значениями напора при низких значениях подач.
    • Вихревые насосы — отдельный тип лопастных насосов, в которых преобразование механической энергии в потенциальную энергию потока (напор) происходит за счёт вихреобразования в рабочем канале насоса.
  • Струйные насосы, в которых перемещение жидкости осуществляется за счёт энергии потока вспомогательной жидкости, пара или газа (нет подвижных частей, но низкий КПД).
  • Тараны (гидротараны), использующие явление гидравлического удара для нагнетания жидкости (минимум подвижных частей, почти нет трущихся поверхностей, простота конструкции, способность развивать высокое давление на выходе, низкие КПД и производительность)

Вихревые насосы

Вихревые насосы — динамические насосы, жидкость в которых перемещается по периферии рабочего колеса в тангенциальном направлении. Преобразование механической энергии привода в потенциальную энергию потока (напор) происходит за счёт множественных вихрей, возбуждаемых лопастным колесом в рабочем канале насоса. КПД идеального вихревого насоса не превышает 45 %КПД реальных насосов обычно не превышает 30 %.

Применение вихревого насоса оправдано при значении коэффициента быстроходности n s < 40 {\displaystyle n_{s}<40} . Вихревые насосы в многоступенчатом исполнении значительно расширяют диапазон рабочих давлений при малых подачах, снижая коэффициент быстроходности до значений, характерных для насосов объёмного типа.

Вихревые насосы сочетают преимущества насосов объёмного типа (высокие давления при малых подачах) и динамических насосов (линейная зависимость напора насоса от подачи, равномерность потока).

Вихревые насосы используются для перекачки чистых и маловязких жидкостей, сжиженных газов, в качестве дренажных насосов для перекачки горячего конденсата.

Вихревые насосы обладают низкими кавитационными качествами. Кавитационный коэффициент быстроходности вихревых насосов C = 100..110 {\displaystyle C=100..110} .

Подобие лопастных насосов

Методы теории подобия и анализа размерностей позволяют на научном основании обобщать экспериментальные данные о показателях насосов. Движение жидкости в насосе некоторых геометрических пропорций определяется в упрощённой модели: диаметром колеса D, м; расходом Q, м³/с; частотой оборотов n, с−1; плотностью жидкости ρ, кгс·с24; вязкостью μ, кгс·с/м². Зависимыми параметрами являются момент на валу насоса M, кгс·м, и напор H, м. Система сводится к зависимости безразмерных комплексов M ¯ = f ( R e , S h ) {\displaystyle \textstyle {\bar {M}}=f(Re,Sh)} :

  • M ¯ = M ρ n 2 D 5 {\displaystyle {\bar {M}}={M \over \rho n^{2}D^{5}}} — безразмерный момент,
  • R e = ρ Q μ D {\displaystyle Re={\rho Q \over \mu D}} — аналог числа Рейнольдса,
  • S h = n D 3 Q {\displaystyle Sh={nD^{3} \over Q}} — аналог числа Струхаля.

Внутренняя мощность пропорциональна моменту на валу, умноженному на число оборотов:

N i = ρ n 3 D 5 f ′ ( R e , S h ) {\displaystyle N_{i}=\rho n^{3}D^{5}f'(Re,Sh)} ;

напор отнесём к скоростному напору: H v 2 / 2 g ∼ H D 2 n 2 / g {\displaystyle \textstyle {H \over v^{2}/2g}\sim {H \over D^{2}n^{2}/g}} (напор в первом приближении пропорционален окружной скорости на периферии колеса),

H = D 2 n 2 g f ″ ( R e , S h ) {\displaystyle H={D^{2}n^{2} \over g}f''(Re,Sh)} .

Тогда для двух геометрически подобных насосов с масштабным соотношением D1/D2 = λ при верном равенстве S h 1 = S h 2 {\displaystyle Sh_{1}=Sh_{2}} (т. е. Q 1 / Q 2 = λ 3 n 1 / n 2 {\displaystyle \textstyle Q_{1}/Q_{2}=\lambda ^{3}n_{1}/n_{2}} ) верны и уравнения подобия для насосов:

N i 1 N i 2 = λ 5 ( n 1 n 2 ) 3 ρ 1 ρ 2 {\displaystyle {\frac {N_{i1}}{N_{i2}}}=\lambda ^{5}\left({n_{1} \over n_{2}}\right)^{3}{\frac {\rho _{1}}{\rho _{2}}}} , H 1 H 2 = λ 2 ( n 1 n 2 ) 2 {\displaystyle {\frac {H_{1}}{H_{2}}}=\lambda ^{2}\left({n_{1} \over n_{2}}\right)^{2}} .

Данные уравнения верны с точностью до масштабного эффекта, вызванного изменением критерия Re и относительной шероховатости поверхности. Уточнённая форма включает изменение соответствующих КПД при изменении Re и D:

Q 1 Q 2 = λ 3 n 1 n 2 η o6 1 η o6 2 {\displaystyle {\frac {Q_{1}}{Q_{2}}}=\lambda ^{3}{n_{1} \over n_{2}}{\eta _{\mbox{o6 1}} \over \eta _{\mbox{o6 2}}}} , N 1 N 2 = λ 5 ( n 1 n 2 ) 3 ρ 1 ρ 2 η M e 1 η M e 2 {\displaystyle {\frac {N_{1}}{N_{2}}}=\lambda ^{5}\left({n_{1} \over n_{2}}\right)^{3}{\frac {\rho _{1}}{\rho _{2}}}{\eta _{\mathrm {M} e1} \over \eta _{\mathrm {M} e2}}} , H 1 H 2 = λ 2 ( n 1 n 2 ) 2 η Γ 1 η Γ 2 {\displaystyle {\frac {H_{1}}{H_{2}}}=\lambda ^{2}\left({n_{1} \over n_{2}}\right)^{2}{\eta _{\Gamma 1} \over \eta _{\Gamma 2}}} .

Следствием из уравнений подобия является соотношение частот подобных насосов (при равных КПД)

n 1 n 2 = Q 2 Q 1 ( H 2 H 1 ) 3 / 4 . {\displaystyle {\frac {n_{1}}{n_{2}}}={\frac {\sqrt {\frac {Q_{2}}{Q_{1}}}}{\left({\frac {H_{2}}{H_{1}}}\right)^{3/4}}}{\mbox{.}}}

Характеристики быстроходности лопастных насосов

Удельное число оборотов nr, с−1, характеризует конструктивный тип рабочего колеса насоса; оно определяется как число оборотов эталонного насоса, подобного данному, с подачей 1 м³/с при напоре 1 м:

nr = nQ[м³/с](H[м])3/4.

Безразмерное удельное число оборотов — более универсальный параметр, не зависящий от размерности применяемых величин:

n ¯ r = n Q ( g H ) 3 / 4 . {\displaystyle {\bar {n}}_{r}^{=}{\frac {n{\sqrt {Q}}}{(gH)^{3/4}}}{\mbox{.}}}

При метрической системе (n, с−1; Q, м³/с; H, м; g = 9,81 м/с²) n̄r ≈ 0,180 nr−1].

Коэффициент быстроходности ns, с−1, — это число оборотов эталонного насоса, подобного данному, с полезной мощностью 75 кгс·м/с при напоре 1 м; при этом принимается, что такой насос работает на воде (γ=1000 кгс/м³) и имеет тот же КПД.

ns = 3,65nQ[м³/с](H[м])3/4.

Данные величины позволяют сравнивать различные насосы, если пренебречь разницей гидравлических и объёмных КПД. Поскольку повышение числа оборотов позволяет, как правило, снизить размеры и вес насоса и его двигателя, и потому выгодно. Колёса малой быстроходности позволяют создавать большие напоры при малой подаче, колёса большой быстроходности применяются при больших подачах и малых напорах.

Типы рабочих колёс в зависимости от коэффициента быстроходности
ns, с−1 D2/D0 Тип насоса
40÷80 ~2,5 Центробежные тихоходные
80÷140 ~2 Центробежные нормальные
140÷300 1,4÷1,8 Центробежные быстроходные
300÷600 1,1÷1,2 Диагональные или винтовые
600÷1800 0,6÷0,8 Осевые

Кавитационное удельное число оборотов n r * {\displaystyle \textstyle n_{r}^{\mbox{*}}} , с−1, — характеристика конструкции проточной части насоса с точки зрения всасывающей способности; представляет собой число оборотов насоса, подобного данному, с подачей 1 м³/с и H0u min = 10 м:

n r * {\displaystyle \textstyle n_{r}^{\mbox{*}}} = nQ[м³/с](H0u min[м]/10)3/4. Купить циркуляционные, скважинные, дренажные, колодезные, фекальные насосы, насосные станции и получить профессиональную консультацию Вы можете в нашем магазине Лаборатория Тепла по адресу: г. Минск, ул. Слободская, д. 2, пом. 15
Информация для покупателя

Юридическое лицо ООО "Лаборатория Тепла"

Беларусь Минск ул. Слободская, д. 2, пом. 15

Дата регистрации в Торговом реестре/Реестре бытовых услуг: 26.05.2015

Номер в Торговом реестре/Реестре бытовых услуг/Регистре производителей товаров: 260294, Республика Беларусь

Регистрационный номер ЕГР: 192437586

УНП: 192437586

Регистрационный орган: Минский горисполком

Дата регистрации компании: 05.03.2015

Ссылка на свидетельство/лицензию

Режим работы:

ДеньВремя работы
Понедельник09:00 — 18:00
Вторник09:00 — 18:00
Среда09:00 — 18:00
Четверг09:00 — 18:00
Пятница09:00 — 18:00
СубботаВыходной
ВоскресеньеВыходной